[image: image1.jpg]

TarantulaWEB v1.0

HTTP/1.0 web server

User Document

Richard Sun

scritch@uclink4.berkeley.edu

Michael Chang

mchang@cory.eecs.berkeley.edu

Do Joon Ra

dojoonra@uclink4.berkeley.edu

Jing Chen

jingchen@uclink4.berkeley.edu

Overview

TarantulaWEB server is an HTTP/1.0 compliant web server, originally developed for the EE122 networking basics class at UC Berkeley. It is cross-platform compliant, and works in Windows NT, 95/98 and has been shown to work in several Unix flavors including Linux, HPUX, and Solaris.

Features

The TarantulaWEB web server implements the following features:

· HTTP/1.0 request support

· GET, POST, and HEAD requests

· CGI support, with both GET, POST, and HEAD support, and most of the environment variables in the CGI spec available. As with other web servers, GET and POST queries can be given at the same time.

· Web Authentication support, w/ base64 decoding, and cookie support

· SSI support, with all standard tags supported.

Special Functions and Restrictions

Aside from being an HTTP/1.0 web server, TarantulaWEB has some extra features, and some limitations.

First, TarantulaWEB is normally a multithreaded application. This allows performance increases in performance, since in general, socket I/O is much slower than what can be handled by the processor. However, this feature can be turned off and can be run in single-threaded mode with a commandline parameter (specifically, -S).

Also, TarantulaWEB has a commandline text-based console that can be used. This console allows the system administrator to manipulate or get information about the current webserver. This console can also be disabled via a commandline switch (specifically, -N). Commands available include:

· stats – lists the number of live connections on the server, and the current set maximum number of connections supported

· set_max X – sets the maximum number of simultaneous connections that the server allows to X

· copylog fn – copies the contents of the current logfile to a new file of the name “fn”

· clear_log – clears the current logfile of any content and starts it over again. This doesn’t do anything if the current logfile is stderr (the default)

· shutdown – shuts down the server cleanly, and doesn’t allow program termination until all current connections finish their transfer. It also disallows new connections while waiting.

Aside from realtime configurable options at the console, several options can be configured via commandline parameters, and in the configuration file. Please see the “Server Setup” section below for more information.

On the limitations side:

TarantulaWEB hasn’t been stress tested for security holes at this time. Although it should be secure with the exception of possible execution of insecure SSI and/or CGI scripts. Please see the “Security Section” below.

Also, the RFC931 tag in the logfile, following the common logfile format, isn’t supported.

Although the config file allows association of various file extentions to types, it does not allow for general MIME type encoding of arbitrary files and encoding type tags. It does allow configuration for the most important ones (ie HTML, SHTML, and images).

A slight quirk to the SSI support is that in most cases, it only parses through the first valid argument to the SSI command given. This is for simplicity’s sake. Any other arguments are ignored. This was a design choice made for simplicity and efficiency.

Finally, although most of the CGI environment variables are supported, there are a couple that are not, including REMOTE_USER, REMOTE_IDENT, and HTTP request HEADER line environment variables.

Server Setup and Configuration

Compiling

Compiling is dependent on the type of machine you are running on.

In Windows NT with Visual Studio or C++ v6.0, load up webserv.dsw and compile in the normal fashion. (ie choose “build…” from the build menu). Assuming your Visual Studio or C++ is set up correctly, it should compile fine. It does not use any unusual libraries or headers.

In Unix, it can become slightly more complicated. There are some requirements that your system must meet for compilation to succeed:

· You must have a pthreads package available, including header and library files. You may need to edit the Makefile to have the correct paths to the headers and libraries for this package, if they do not reside in normally included header and lib directories.

· Currently, the Makefile is configured to work on the standard HPUX and Solaris setups predominant at UC Berkeley’s CS labs. The Linux configuration is configured for custom paths, and will most likely need to be changed.

To compile in Unix, type “gmake” in the directory to compile the server.

Installation

There are no special installation requirements for TarantulaWEB. The executable can be placed and run anywhere. The only restriction is that either a) a configuration file called “WebServ.cfg” resides in the same directory, or in the directory you’re running it from, or b) the switch ‘-C’ is used at the commandline to specify an alternative config file. (please see the “Configuration” subsection below)

If you have a Windows NT/95/98 installation executable, double-clicking on the self-extracting archive will allow you to unzip the executable and example config file to a directory on your hard disk.

No extra environment settings are required for the server to work.

Also note that in unix, in general, you need to be running as a user with superuser permissions to start the server on any ports below 2000, such as 80, the normal HTTP port.

Configuration

Commandline Parameters

TarantulaWEB supports several commandline parameters for initialization configuration. The following is a list of these parameters:

· -Pportnum
Specified the portnumber that the server should run on. ie webserv –P2000. This defaults to port 80 if this switch is not used.

· -Llogfilename
Specifies the name of a file that the log entries should be written to. If an existing file is indicated, new log entries will be appended to it. This defaults to stderr.

· -Cconfigfilename
Specifies an alternate filename for the config file. This defaults to “WebServ.cfg”

· -D
Turns on debugging output to stdout.

· -S
Forces the server to run in single-threaded operation. It will in most cases cause a performance hit. Default mode is multi-threaded operation

· -N
Turns off the console. Default is to have the console on.

· -?
Shows usage information

Config File

TarantulaWEB requires that a configuration file to be loaded, either a preexisting file in the current working directory called WebServ.cfg, or an arbitrary other file specified with the ‘-C’ commandline option. An example WebServ.cfg is distributed with TarantulaWEB, which includes comments explaining various configuration options set. Below is a reproduction of this example file, which should help explain what everything does.

This is the configuration file for TarantulaWEB server v1.0

files w/ #'s at the beginning are comment lines.

this specifies the directory that will be used for temporary files

defaults to ./temp

#tempdir ./cgi-bin

this entry specifies the maximum number of http connections

maxconnections 500

make this 0 to turn off reverse DNS lookup for client

make this >0 to turn it on. This severly slows down

http service requests in some cases. [defaults to off]

dnslookup 0

make this 0 to turn off SSI support

make this >0 to turn it on. [defaults to on]

SSIenable 1

make this 0 to turn off SSI exec support

make this >0 to turn it on. [defaults to off]

allowSSIexec 1

this specifies the maximum length an SSI field can be in SHTML files

default is 512

#maxSSIlen 1024

these are directorymaps

in the syntax "dirmap remotedir localdir"

NOTE: it must be ended w/ a slash

also the '/' entry must exist

Also, if referring to the current directory, use '.', not './'

dirmap / .

dirmap /scritch i:/digita~1.0

dirmap /test ./testhtml

these are directorymaps

in the syntax "dirmap remotedir localdir"

defaulthtml index.html

defaulthtml index.htm

##these are extensions that are recognized and processed as SHTML files

shtmltype shtml

shtmltype shtm

##these are extensions that are recognized and processed as HTML files

htmltype html

htmltype htm

##these are extensions that are recognized and processed as CGI files

cgitype cgi

cgitype exe

cgitype bat

cgitype pl

##these are extensions that are recognized and processed as image files

in the syntax "imagetype extension apptype"

imagetype gif gif

imagetype jpg jpeg

Basic.pwd files

A file called basic.pwd can be placed in directories to protect any files in that directory and force a authentication challenge. The format of this file is as follows:

[number of entries]

[username 1]

[password 1]

[username 2]

[password 2]

[. . .]

If this file exists in a directory in which a request is made, the browser will be challenged for authentication based on the credentials supplied in this file. The transaction between the server and browser is encrypted w/ base64 when possible.
Note that if this file is in a directory, it will not appear in the web browser’s directory listing. It will also result in a 404 – Not Found. The byproduct of this is that a file called “basic.pwd” cannot exist as a normal file for web browsers to access. This is hard-coded in the program for security purposes.

Security Issues

As with most things in the software world, there is not a 100% assurance that this server is secure. Also, certain configuration choices will affect how secure or insecure this server is. Also, the level of security is somewhat dependent on the OS it is running on and how it is set up. File and directory permissions related to the web server will need to be set up accordingly. Also note that “..” directory names are valid, and can allow the server to access files OUTSIDE of whatever directory it has based the root in, unless proper permissions are set.

In Unix, the system administrator needs to set up permissions so that directories and files they don’t want to be accessed remotely to be denied to the UID associated with the process or user running the web server.

In NT, the security of your local files is dependent on several factors. First, if your disk is of FAT format, file permissions cannot be set and there exists a danger that users can access arbitrary files on the disk. If the disk is formatted as NTFS, NT provides file permissions based on username/group. In this case, the sysadmin can set permissions so that the web server cannot access certain files.

Additionally, several options open the server to security holes:

· SSI – if SSI is enabled, and SSIexec, it is possible that programs or scripts could be run that violate the security of the system.

· CGI – certain CGI scripts can be run that can take advantage of security holes. Also, if a CGI script is run directly as opposed to through an html file, it has the potential of bypassing any www-auth file protection in it’s directory, since the CGI is loaded up before auth requirements are checked. This is sort of a design flaw that needs to be kept in mind, that will be changed in future versions

· Console – if the console is turned on, people local to the machine can issue commands to the server that may be undesirable. However, this involves physical security (ie access to the keyboard and screen), so isn’t quite the same thing.

If you want it to be running with minimal security holes, we suggest running it on an NT workstation with NTFS and file permissions set with the server running as a user with access only to the necessary directories, or in a Unix system as a “web server” user whose group is NULL, and which can only access directories and files with world permissions set. Also, for added protection, disable SSIexec and CGI execution.

