[image: image1.jpg]

TarantulaWEB v1.0

HTTP/1.0 web server

User Document

Richard Sun

scritch@uclink4.berkeley.edu

Michael Chang

mchang@cory.eecs.berkeley.edu

Do Joon Ra

dojoonra@uclink4.berkeley.edu

Jing Chen

jingchen@uclink4.berkeley.edu

Background

TarantulaWEB is a server for web clients, using the socket programming interface, the typical OS manipulations required of an Internet server, and the HTTP protocol used to provide web content (today, mostly HTTP). TarantulaWEB is an HTTP/1.0 compliant web server, originally developed for the Spring 1999, EE122 networking basics class at UC Berkeley. It is cross-platform compliant, and works in Windows NT, 95/98 and has been shown to work in several Unix flavors including Linux, HPUX, and Solaris.

The requirements specified by the class project specs included:

· Must be able to handle more than one simultaneous client access.

· Should be robust to unusual input introduced by the client program

· Must handle HTTP 1.0 clients.

· Must support logging of connections using the common logfile format and

· the execution of CGI scripts.

In addition, there were a choice of extensions of which a subset we had to implement.

Feature List

The TarantulaWEB web server implements the following basic features:

· HTTP/1.0 request support – this includes getting and parsing a standard HTTP request header from a standard BSD socket (or in windows’ case, a winsock BSD socket) listening on port 80, or an other specified port. This also includes sending content/header type, and a number of other fields, including “Last-Modified”, “date” and other fields.

· GET and HEAD requests – it supports standard GET and HEAD requests. GET is just a normal resource fetch on a virtual URL. HEAD only returns the response header that would be returned if the resource was actually returned.

· CGI support, with both GET, POST, and HEAD support, and most of the environment variables in the CGI spec available. As with other web servers, GET and POST queries can be given at the same time. CGI, the Common Gateway Interface, allows a way for the web server to send input to and get output from a local program and return it as web content.

 The extensions we chose are:

· Implement POST requests (including appropriate CGI support)
POST involves parsing out the content-length field in the POST request header, and grabbing the content body from below the normal HTTP request. This content is piped to the STDIN of the target CGI program. Aside from this, CGI works in the same way. POST provides and additional way to send data to the CGI program.

· Implement basic authentication (password-protected pages)
This allows the server to password protect certain directories and files. Directories that contain a special password file require authentication information. This password file contains the user authentication entries. When first attempting to access a protected realm, the client is prompted for a user-id and password. This user-id and password string is encoded in base64 at the client and sent to the server where it is decoded and checked against the entries in the password file.

· Server Side Includes (SSI)
SSI involves looking in HTML for specific tags that it recognizes as valid SSI commands. Specifically, the tags supported are <!--#config ... -->, <!--#flastmod -->, <!--#fsize -->, <!--#include... -->, <!--#echo ... -->, and <!--#exec ... -->. In each case, the tag itself is replaced with new text. Config is the only one with no actual output. Config sets various options for the way SSI fields are printed. Flastmod is replaced with the last modified date of the current file. Fsize is replaced with the file size. Include includes another file into the current HTML file where the include is. Echo is replaced with the variable value specified. Exec puts in the results of executing the given command or CGI program. Please see SSI documentation for more information.
Process Structure

The TarantulaWEB web server can be run in two modes of operation: multi-threaded and single threaded. Please see the User Document for information about how to run in either mode. Single threaded operation is provided for low-processor overhead service, but it much less scalable for higher loads.

Multi-threaded operation is much better for heavier access loads. In Unix, this is accomplished with mutexes and thread creation and spawning calls provided with the standard MIT pthreads package. In NT, it uses built in afx calls to handle threads, and CMutex class for concurrency control.

Below is a flow-diagram showing the basic idea of how the threading structure works:

In this design, there is always a minimum of 2 threads running – the main thread, which also runs the console if turned on, and the listener thread, which waits for incoming connection requests. The maximum number of total threads is configurable both in the config file and through dynamically setting the max via the command console. When this maximum number is reached, the client browser will receive a 503 error, with the message “Server is too busy”.

The listener and main threads end when a shutdown command is given. Active server threads service actual requests, and as per HTTP/1.0 protocol, closes the connection when finished, at which point the thread itself ends.

Data Structures

TarantulaWEB is mostly an object-oriented program. Figure 2 shows the class inheritance hierarchy of various classes in the program. Following is a brief description of each class, and what they do.

· Server
This is an abstract class and cannot be instantiated. However, it has several static (class) variables and functions related to mutexes, shutting down, and general concurrency control

· ListenServer
The main thread spawns a listenserver in a separate thread. It merely loops and accepts connections on the port specified (or port 80 default). Once a connection is made with an “accept” socket call, it spawns off an active server.

· ActiveServer
ActiveServer is where the majority of the HTTP request servicing happens. It initially reads in the request header(s) from the client. It then parses them up and stores them in a informational struct called HTTPRequest. From this information gathered, it then proceeds to ask the ConfigFile class to translate the virtual URL, try to figure out what type of file it is, etc. It then tries to open the file. If the file can be opened, it opens it. If authentication is required, it sends a challenge and stops. If not, it then sends a response header, and if the file is valid, the file contents. Once the transaction is complete, the thread closes.

· ServerFile
This is an abstract class, only used to help delineate between remotely served files, and files local to the server.

· ConfigFile
This Class loads the configuration file on startup, and can be asked to provide various information about the current setup based on the contents of the config file. This includes virtual URL to real path conversion, matching of file extensions for filetype processing, and setting of various options.

· LogFile
Logfile is a simple wrapper around a file stream that is used for the common logfile. Aside from remapping “clog” to a file if needed, it also has functions for copying the file to a backup one, and clearing the current logfile.

· HTTPfile
Base class for remotely served files. It contains a few variables that are useful in subclasses, such as the path to the file, and the filename

· NonHTMLfile
This class represents files that are not HTML files, such as graphics. When created, it opens a file in binary read mode and directly gets data from the file when requested.

· HTMLfile
When created, HTMLfile loads in all the contents of an HTML file ahead of time into a list of chunks of data. It can then subsequently be “read” in the expected way.

· SHTMLfile
This is the same as an HTMLfile, except that it is lightly parsed for SSI include statements. Anytime an SSI statement is found, it is removed from the data list, and the proper data is inserted in its place. This is one of the places it is useful that the data is stored in a list for HTML files. Although it is somewhat difficult to implement and nonconventional, it makes replacement very fast and easy with minimal memory allocation, copying, and deallocation.

· DirectoryFile
When the URI is translated to a directory name, this class reads in the contents of the directory and create an HTML document in memory to display the directory contents with links. Again, the linked list structure of the HTMLfile class becomes useful and makes it very easy to insert these items.

· CGIfile
Originally, there was no CGI file class. The CGI program was executed, the output stored, and loaded with a normal HTMLfile class. However, it soon became evident that it would be useful to have a separate class for use in SSI exec’s. This class executes a CGI program and saves the output in the same way as a normal HTMLfile. Data can be accessed the expected way. In the case of POST requests, the contentbody of the request header is initially stored in a temporary file in the temp directory specified in the config file.
Again, the list structure proves useful for SSI, since no copying needs to be done. The SHTMLfile class can create a CGIfile class when an exec cgi is requested, and the linked list of the CGI file can be inserted easily into that of the HTMLfile.
Aside from the object oriented aspects of the program, there are several plain functions that help out with more mundane tasks. There is a module that helps with commandline parsing based on a argument parsing table. Also, there are a couple routines that are used to help reroute signal handling in Unix systems. Finally, there is a C module that contains code to parse and translate ASCII date and time strings to a normal system represented time. This module was adapted from code originally written by Jef Poskanzer <jef@acme.com>. The reason that we chose to use his module instead of writing our own is because after looking it over carefully, rewriting it from scratch would result in almost exactly the same code. The code mostly involves comparing arrays of names of days and months in different date formats until it fits and then returns the translated value. Also, the logical bitwise operations in the base64 decode function were based in part on similar code developed by ACME labs. Aside from these small pieces of code, all the code is original code written by us.

OS Dependency

The TarantulaWEB web server has been compiled an run on a variety of systems, including Windows NT, Windows 95/98, HPUX, Linux, and Solaris.

The easiest platform to deal with in compiling and running is surprisingly, Windows NT. There are no outside auxillary items needed outside of the normal DLLs, libraries, and headers provided with MSVC++ 6.0. Loading up the dsw file and compiling will work.

In Unix, it gets slightly more complicated. Specifically, one must keep in mind the following two things when trying to compile or run TarantulaWEB:

· You must have a pthreads package available, including header and library files. You may need to edit the Makefile to have the correct paths to the headers and libraries for this package, if they do not reside in normally included header and lib directories.

· Currently, the Makefile is configured to work on the standard HPUX and Solaris setups predominant at UC Berkeley’s CS labs. The Linux configuration is configured for custom paths, and will most likely need to be changed.

Aside from these few exceptions, it should run on any of the mentioned platforms.

Functional Decomposition

As mentioned before, the TarantulaWEB web server is mostly object-oriented. See figure 2 for the object hierarchy. Figure 1 basically shows the structure of how the program runs. Figure 3 is a flow chart that outlines more thoroughly how the server runs and the order it does things in. This chart leaves out the details of loading some files, such as executing CGI programs and parsing SSI out of SHTML files, and loading directory contents for creating a directory listing. The list below expands on this and shows more detail at each level.

· Server

· init_server (static)

· initialize mutexes

· returns: void; arguments: none

· kill_server (static)

· deinitialize mutexes

· returns: void; arguments: none

· shutdown (static)

· shutdown the server

· returns: void; arguments: none

· short is_alive (static)

· whether server is going to die or not

· returns: short; arguments: none

· check_threads (static)

· count the number of running threads

· returns: int; argument: none

· check_listeners (static)

· count the number of listeners (static)

· returns: int; argument: none

· set_max (static)

· set the maximum number of clients

· returns: void; argument: int val (value to set)

· get_max (static)

· get the maximum number of clients

· returns: int; argument: none

· incr_threads

· increment the counter for number of running threads

· returns: void; argument: none

· decr_threads

· decrement the counter for number of running threads

· returns: void; argument: none

· incr_listeners

· increment the counter for number of listeners

· returns: void; argument: none

· decr_listeners

· decrement the counter for number of listeners

· returns: void; argument: none

· ListenServer

· ListenServer

· create new listening server with given port number

· returns: N/A; argument: int port (port number)

· ~ListenServer

· destructor, clean up memory

· returns: N/A; argument: none

· start_listen

· listen for new connections

· returns: void; argument: none

· ActiveServer

· ActiveServer

· create new active server with given socket file descriptor

· returns: N/A; argument: none

· ~ActiveServer

· destructor, clean up memory

· returns: N/A; argument: none

· service

· service new connections

· this includes getting and parsing the request, requesting the file(s) to be opened through the HTTPfile classes, sending the response header and information, and writing to the logfile.

· returns: void; argument: none

· Challenge

· challenge client for basic authentication information

· returns: void; argument: none

· CheckPassword

· check clients authentication information

· returns: BOOL (true if password ok); argument: char* dirpath (path where passfile is located)

· decode

· take given string and perform base64 decoding on it, store in encodedstring

· returns: int (length of decoded string); argument: char * encodedstring , char* decodedstring

· ParseReq

· parse the request

· returns: int (error code if error); argument: none

· notmodified

· send this URL request when the file has not been modified

· returns: void; argument: none

· redirectperm

· permanently redirect to new path

· returns: void; argument: none

· internalerr

· send internal error (probably failed CGI)

· returns: void; argument: none

· message

· send messages based on error codes

· returns: void; argument: int code (error code)

· ServerFile

· ConfigFile

· ConfigFile

· constructor, take a filename reads in the file and reads options

· returns: N/A; argument: char* fname (file name to read)

· ~ConfigFile

· destructor, clean up memory

· returns: N/A; argument: none

· get_maxclients

· return parsed out max number of clients

· returns: int (number of clients); argument: none

· translateURL

· return string with translated url

· returns: char* (translated URL) ; argument: char* url (URL to translate)

· URLtype

· checks URL to see what kind of thing it is

· returns: int (URL type code); argument: char* url (URL to check)

· lookupImgType

· checks apptype entry for image

· returns: char* (type of image); argument: char* ext (extention)

· getDefaultHTML

· gets default html name(s), subsequent calls yield the next default html name

· returns: void; argument: char* base, BOOL reset (reset if False)

· getcgiexts

· gets each subsequent CGI extension, subsequent calls yield the next cgi ext name

· returns: char* (cgi texts); argument: BOOL reset (reset if False)

· get_dnslookup

· returns the dnslookup value

· returns: BOOL (true if found) ; argument: none

· gettempdir

· returns the temporary directory path

· returns: char* (path of temporary directory); argument: none

· getmaxSSIlen

· returns the max SSI length

· returns: int (length); argument: none

· SSIenabled

· whether or not SSI is enabled

· returns: BOOL (true if enabled); argument: none

· SSIexec_enabled

· whether or not SII execution is enabled

· returns: BOOL (true if enabled); argument: none

· LogFile

· LogFile

· constructor, set clog to given file, append mode

· returns: N/A; argument: char* fname (filename for logfile)

· backup

· backup logfile

· returns: void; argument: char* newfn (filename for backup)

· clear

· empty out logfile

· returns: void; argument: none

· HTTPfile

· HTTPfile

· constructor, create HTTP file

· returns: N/A; argument: char* filepath (path of file)

· ~HTTPfile (virtual)

· destructor, clean up memory

· returns: void; argument: none

· GetData (virtual)

· read given amount into buffer

· returns: int (amount read); argument: char* buffer (buffer to read into), int maxlen (max to read)

· reset (virtual)

· reset position of read file to 0

· returns: void; argument: none

· isvalid

· check if this file is valid

· returns: BOOL (true if valid); argument: none

· requiresAuth

· determine if file requires authentication

· returns: BOOL (true if requires authentication); argument: none

· invalidate

· invalidate file

· returns: void; argument: none

· geterror

· returns error code

· returns: int (error code); argument: none

· getsize

· returns size of file

· returns: int (size of file); argument: none

· getpath

· returns path of file

· returns: char* (path of file); argument: none

· getlastmod

· returns time of latest modification

· returns: time_t (struct time of modification); argument: none

· HTMLfile

· HTMLfile

· constructor, create HTML file

· returns: N/A; argument: char* filename (name of file to create)

· OpenFile (virtual)

· opens HTML file

· returns: FILE* (pointer to open file); argument: char* filename (name of file to open)

· CloseFile (virtual)

· closes HTML file

· returns: void; argument: FILE* file (pointer to file to close)

· ReadOpenFile

· read an open HTML file

· returns: void; argument: FILE* file (pointer to file to read)

· SHTMLfile

· SHTMLfile

· constructor, create SHTML file

· returns: N/A; argument: char* filename (name of file to create)

· ~SHTMLfile

· destructor, clean up memory

· returns: N/A; argument: none

· SSI_exec

· replace SSI executions with result

· returns: int (result); argument: HTTPRequest* this request (request info), ConfigFile* conf (pointer to configuration file)

· Getvarvalue

· get value for a requested variable

· returns: char* (value of variable); argument: char* varname (variable name), HTTPRequest* thisreq (request info), ConfigFile* conf (pointer to configuration file)

· SSIerror

· create an error message based on base message

· returns: char* (error message); argument: char* basemsg (base message), HTTPRequest* thisreq (request info)

· DirectoryFile

· DirectoryFile

· constructor, create directory based on path and URI

· returns: N/A; argument: char* dir (directory path), char* URI

· CGIfile

· CGIfile

· constructor, create CGI file

· returns: N/A; argument: char* commandline (what to execute), HTTPRequest* req (request info)

· OpenFile

· open CGI file

· returns: FILE* (pointer to open file); argument: char* filename (name of file to open)

· CloseFile

· close CGI file

· returns: void; argument: FILE* file (pointer to file to close)

· NonHTMLfile

· NonHTMLfile

· constructor, create non-HTML file

· returns: N/A; argument: char* filename (name of file to create)

· ~NonHTMLfile

· destructor, clean up memory

· returns: N/A; argument: none

Limitations and Bugs

Although TarantulaWEB has been tested pretty thoroughly, run through purify, and tested to some extent on multiple platforms, there are still a few quirks and problems that we chose to leave alone for fixing in any possible future releases. Below is a list of these quirks and problems. Please take these into consideration when setting up your website.

· TarantulaWEB hasn’t been stress tested for security holes at this time. Although it should be secure with the exception of possible execution of insecure SSI and/or CGI scripts. Please see the “Security Section” in the User Document.

· Also, the RFC931 tag in the logfile, following the common logfile format, isn’t supported.

· Although the config file allows association of various file extentions to types, it does not allow for general MIME type encoding of arbitrary files and encoding type tags. It does allow configuration for the most important ones (ie HTML, SHTML, and images).

· A slight quirk to the SSI support is that in most cases, it only parses through the first valid argument to the SSI command given. This is for simplicity’s sake. Any other arguments are ignored. This was a design choice made for simplicity and efficiency.

· SSI exec cgi commands cannot execute CGI scripts on another server, only the current one. This was a design choice, so isn’t really a bug. We tried this on the webserver running on parker.eecs.berkeley.edu, and found that they too do not allow remote CGI execs.

· Currently, no “GET” format arguments can be sent to the SSI CGI exec. Basically, the code to parse the command up into the filename and GET query does not exist. However, it is not clear in the SSI documents whether this is even necessary, so this may not be a bug at all.

· Another problem with CGI and SSI is that if it executes a program that does not end, the thread waiting for that process to end will never die. Ie there are no timeouts for executed processes. These processes will continue to run until explicitly killed.

· Finally, although most of the CGI environment variables are supported, there are a couple that are not, including REMOTE_USER, REMOTE_IDENT, and HTTP request HEADER line environment variables.

Bibliography and References

“RFC1945 - Hypertext Transfer Protocol -- HTTP/1.0”
Berners-Lee, R. Fielding, H. Frystyk

May 1996

http://info.internet.isi.edu/in-notes/rfc/files/rfc1945.txt
“The CGI Specification”
NCSA HTTPd Development Team

January 1998

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
“Server Side Includes (SSI)”
NCSA HTTPd Development Team

September 1995

http://hoohoo.ncsa.uiuc.edu/docs/tutorials/includes.html
“tiny/turbo/throttling HTTP server”

ACME labs

August 1998

http://www.acme.com/software/thttpd/
(used for reference help with auth base64 decoding, and date parsing)

“tdate_parse”

Jef Poskanzer <jef@acme.com>

1995

(date parsing module)

Figure 1: Flow diagram for thread lifecycles. Dashed arrow lines indicate where new threads are spawned.

Begin main thread

End program

Spawn listener thread

Wait for shutdown

Wait for new requests

Active Server

Begin Active server

Begin Listenserver

If not shutdown, keep waiting, else send thread

Get and parse request

If valid, service that req

Close thread

Spawn activeserver for new connection

Listen Server

Server

CGIfile

DirectoryFile

SHTMLfile

LogFile

ConfigFile

File

serverfile

HTTPfile

NonHTMLfile

HTMLfile

Figure 2: Class inheritance hierarchy

Spawn activeserver for new connection

If file is invalid, try opening as directory w/ index.html or other configured default filenames

If valid, translate request into a local path and filename

Get and parse request

If not shutdown, keep waiting, else send thread

Begin Listenserver

Begin Active server

Wait for new requests

Wait for shutdown.�If enabled, service console

Spawn listener thread

End program

Begin main thread

Figure 3: Flow diagram for the server operation. (details of file loading/processing left out)

Parse commandline

Load Configfile

Open as HTMLfile

Open as SHTML file

Try to open file based on ext

Open as NonHTMLfile

If still not valid, try opening as a directory list, if not send error

If needed, check for basic auth string. If none, challenge client. Else check authentication. If failed, send error. Else, continue

Open as CGIfile

Send data

Close connection, end thread

Send error (various)

Auth challenge

If valid

If not valid

If not valid

If valid

If failed auth

If no auth info

If passed auth check

